Exercise 30

Explain, in terms of linear approximations or differentials, why the approximation is reasonable.

$$
\sqrt{4.02} \approx 2.005
$$

Solution

Compute the derivative of $y=\sqrt{x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(\sqrt{x}) \\
& =\frac{d}{d x}\left(x^{1 / 2}\right) \\
& =\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

Consequently, the differential of $y=\sqrt{x}$ is

$$
d y=\frac{1}{2} x^{-1 / 2} d x
$$

In order to estimate $\sqrt{4.02}$, set $x=4$ and $d x=0.02$.

$$
d y=\frac{1}{2}(4)^{-1 / 2}(0.02)=\frac{1}{200}=0.005
$$

Note that $d y$ here is the vertical distance from the function's actual value at $x=4$ to the linear approximation's value at $x=4.02$.

$$
\sqrt{4.02} \approx \sqrt{4}+0.005=2.005
$$

